Section 2.6 Rational Functions and Asymptotes

Solutions to Even-Numbered Exercises

2. \(f(x) = \frac{5x}{x - 1} \)

(a) \[
\begin{array}{c|c|c|c|c|c}
 x & f(x) & x & f(x) & x & f(x) \\
 0.5 & -5 & 1.5 & 15 & 5 & 6.25 \\
 0.9 & -45 & 1.1 & 55 & 10 & 5.55 \\
 0.99 & -495 & 1.01 & 505 & 100 & 5.05 \\
 0.999 & -4995 & 1.001 & 5005 & 1000 & 5.005 \\
\end{array}
\]

(b) The zero of the denominator is \(x = 1 \), so \(x = 1 \) is a vertical asymptote. The degree of the numerator is equal to the degree of the denominator, so the line \(y = \frac{5}{1} = 5 \) is a horizontal asymptote.

(c) The domain is all real numbers except \(x = 1 \).

4. \(f(x) = \frac{3}{|x - 1|} \)

(a) \[
\begin{array}{c|c|c|c|c|c}
 x & f(x) & x & f(x) & x & f(x) \\
 0.5 & 6 & 1.5 & 6 & 5 & 0.75 \\
 0.9 & 30 & 1.1 & 30 & 10 & 0.33 \\
 0.99 & 300 & 1.01 & 300 & 100 & 0.03 \\
 0.999 & 3000 & 1.001 & 3000 & 1000 & 0.003 \\
\end{array}
\]

(b) The zero of the denominator is \(x = 1 \), so \(x = 1 \) is a vertical asymptote. Because the degree of the numerator is less than the degree of the denominator, the \(x \)-axis or \(y = 0 \) is a horizontal asymptote.

(c) The domain is all real numbers except \(x = 1 \).

6. \(f(x) = \frac{4x}{x^2 - 1} \)

(a) \[
\begin{array}{c|c|c|c|c|c|c}
 x & f(x) & x & f(x) & x & f(x) & x & f(x) \\
 0.5 & -2.66 & 1.5 & 4.8 & 5 & 0.833 & -5 & -0.833 \\
 0.9 & -18.95 & 1.1 & 20.95 & 10 & 0.40 & -10 & 0.40 \\
 0.99 & -199 & 1.01 & 201 & 100 & 0.04 & -100 & 0.04 \\
 0.999 & -1999 & 1.001 & 2001 & 1000 & 0.004 & -1000 & 0.004 \\
\end{array}
\]

(b) The zeros of the denominator are \(x = \pm 1 \) so both \(x = 1 \) and \(x = -1 \) are vertical asymptotes. Because the degree of the numerator is less than the degree of the denominator, the \(x \)-axis or \(y = 0 \) is a horizontal asymptote.

(c) The domain is all real numbers except \(x = \pm 1 \).
8. \(f(x) = \frac{1}{x - 3} \)
 - Vertical asymptote: \(x = 3 \)
 - Horizontal asymptote: \(y = 0 \)
 - Matches graph (d).

10. \(f(x) = \frac{1 - x}{x} \)
 - Vertical asymptote: \(x = 0 \)
 - Horizontal asymptote: \(y = -1 \)
 - Matches graph (e).

12. \(f(x) = \frac{-x + 2}{x + 4} \)
 - Vertical asymptote: \(x = -4 \)
 - Horizontal asymptote: \(y = -1 \)
 - Matches graph (f).

14. \(f(x) = \frac{3}{(x - 2)^3} \)
 - (a) Domain: all real numbers except \(x = 2 \)
 - (b) Vertical asymptote: \(x = 2 \)
 - Horizontal asymptote: \(y = 0 \)
 - [Degree of \(p(x) \) < degree of \(q(x) \)]

16. \(f(x) = \frac{2 - 5x}{2 + 2x} \)
 - (a) Domain: all real numbers except \(x = -1 \)
 - (b) Vertical asymptote: \(x = -1 \)
 - Horizontal asymptote: \(y = -\frac{5}{2} \)
 - [Degree \(p(x) = \) degree \(q(x) \)]

18. \(f(x) = \frac{3x^2 + 1}{x^2 + x + 1} \)
 - (a) Domain: All real numbers. The denominator has no real zeros. [Try the Quadratic Formula on the denominator.]
 - (b) Vertical asymptote: none
 - Horizontal asymptote: \(y = 3 \)
 - [Degree \(p(x) = \) degree \(q(x) \)]

20. \(f(x) = \frac{x^2(x - 3)}{x^2 - 3x} \), \(g(x) = x \)
 - (a) Domain of \(f \): all real numbers except 0 and 3
 - Domain of \(g \): all real numbers
 - (b) Because \(x^2 - 3x \) is a common factor of both the numerator and the denominator of \(f(x) \), neither \(x = 0 \) nor \(x = 3 \) is a vertical asymptote of \(f \). Thus, \(f \) has no vertical asymptotes.

 (c)
<table>
<thead>
<tr>
<th>(x)</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-1</td>
<td>Undef.</td>
<td>1</td>
<td>2</td>
<td>Undef.</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>(g(x))</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3.5</td>
<td>4</td>
</tr>
</tbody>
</table>

 (d) \(f \) and \(g \) differ only where \(f \) is undefined.
22. \(f(x) = \frac{2x - 8}{x^2 - 9x + 20}, \quad g(x) = \frac{2}{x - 5} \)

(a) Domain of \(f \): all real numbers except 4 and 5
Domain of \(g \): all real numbers except 5

(b) Because \(x - 4 \) is a common factor of both the numerator and the denominator of \(f, x = 4 \) is not a vertical asymptote of \(f \). The only vertical asymptote is \(x = 5 \).

(c) \[
\begin{array}{c|ccccccc}
 x & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
-\frac{2}{5} & -\frac{1}{2} & -\frac{2}{5} & -1 & \text{Undef.} & \text{Undef.} & 2 \\
st & -\frac{2}{5} & -\frac{1}{2} & -\frac{2}{5} & -1 & -2 & \text{Undef.} & 2 \\
\end{array}
\]

(d) \(f \) and \(g \) differ only at \(x = 4 \) where \(f \) is undefined and \(g \) is defined.

24. \(f(x) = 2 + \frac{1}{x - 3} \)

(a) As \(x \to \pm\infty, f(x) \to 2 \).

(b) As \(x \to \infty, f(x) \to 2 \) but is greater than 2.

(c) As \(x \to -\infty, f(x) \to 2 \) but is less than 2.

26. \(f(x) = \frac{2x - 1}{x^2 + 1} \)

(a) As \(x \to \pm\infty, f(x) \to 0 \).

(b) As \(x \to \infty, f(x) \to 0 \) but is greater than 0.

(c) As \(x \to -\infty, f(x) \to 0 \) but is less than 0.

30. \(h(x) = 6 + \frac{4}{x^2 + 2} \)

There are no real zeros.

32. (a) \(C = \frac{25,000(15)}{100 - 15} \approx 4411.76 \)

The cost would be $4411.76.

(c) \(C = \frac{25,000(90)}{100 - 90} = 225,000 \)

The cost would be $225,000.

(e) No. The model is undefined for \(p = 100 \).

34. (a) Use data \((10, \frac{1}{7}), (20, \frac{1}{10}), (30, \frac{1}{11}), (40, \frac{1}{12}), (50, \frac{1}{13})\). The least squares line for this data \((x, 1/y)\) is:

\[
\frac{1}{y} = 0.164 - 0.0029x \implies y = \frac{1}{0.164 - 0.0029x} = \frac{1}{\frac{25260 - 447x}{154,000}} = \frac{154,000}{3(8420 - 149x)}
\]

(b) \[
\begin{array}{c|cccccc}
 x & 10 & 20 & 30 & 40 & 50 \\
 7.4 & 9.4 & 13.0 & 20.9 & 52.9 \\
\end{array}
\]

(c) No, the function is negative for \(x = 60 \).