1. Fig. 1 shows the graphs of $r(t)$, $\theta(t)$, and $z(t)$ as functions of time t. Sketch the path of an object whose cylindrical coordinate location at time t is $(r(t), \theta(t), z(t))$.

2. Describe in words and with a sketch, the surface we get in spherical coordinates for $(3, \theta, \phi)$ for $0 \leq \theta \leq 360^\circ$ and $0 \leq \phi \leq 30^\circ$.

3. $f(x,y) = \frac{x^2}{x^2 + 2y^2}$ (Show your work. No work = no points.)

 (3) (a) Calculate the limit of $f(x,y)$ as (x,y) approaches $(3,-1)$:

 (3) (a) Calculate the limit of $f(x,y)$ as (x,y) approaches $(0,0)$:

4. \[f(x,y) = x^2 y^3 + 2x - 2y^3 + 5 \] (All questions on this page refer to this function.)

(4) (a) \[f_x(x,y) = \] \hspace{1cm} (1) Evaluate \[f_x(2,1) = \]

(4) (b) \[f_y(x,y) = \] \hspace{1cm} (1) Evaluate \[f_y(2,1) = \]

(4) (c) \[f_{yx}(x,y) = \]

(4) (d) At the point \((2, 1) \), \[dz = \]

(4) (e) Use the previous result to estimate the value of \[f(1.9, 1.3) \approx \]

(5) (f) Write an equation for the plane tangent to the graph of \(f(x,y) \) at the point \((2, 1, 11) \).

\[z = \]

(4) (g) \[\nabla f(x,y) = \] \hspace{1cm} (2) \[\nabla f(2,1) = \]

(5) (h) When \(u = 0.6i - 0.8j \), \[D_u f(2,1) = \]

(4) (i) The maximum value of \(D_u f(2,1) \) is \[\]

and this maximum occurs when \(u = \{ \quad , \quad \} \) (fill blanks with decimal #s)
5. The surface area S (in m2) of a person with weight w (in kg) and height h (in cm) is

$$ S(w,h) = 0.007 w^{0.4} h^{0.7} $$

so a 50 kg person who is 160 cm tall has a surface area of

$$ S(50, 160) = 1.17 \text{ m}^2 \text{ (approximately)}. $$

(a) What are the units of S_w? ________________ Units of S_h? ________________

(b) Calculate $S_w(w, h)$ at the point $(50, 160) = _____________ \text{(include units).}$

(c) Explain the meaning of $S_w(50, 160)$ in part (a) as it applies to the 50 kg, 160 cm person.

6. The temperature at the location (x, y, z) in a room is $T(x,y,z) = x^2 + 2y^3 + xz$ degrees. An object is moving along the path given parametrically by $x = 1 + 2w$, $y = \sin(3w)$, $z = 5 + 3w + w^2$ at time w

(a) Draw the map (web, tree) showing how the variables are connected.

(b) Use the Chain Rule to write the formula for

$$ \frac{dT}{dw} = $$

(c) Calculate $\frac{dT}{dw}$ when $w = 0$: $\frac{dT}{dw} = _____________ \text{ (number)}$
7. Several depth readings for a portion of a lake are shown in the figure.
Sketch "reasonable" level curve(s) for the depth 4.

8. The diagram shows some elevation level curves of the function \(z = g(x,y) \).

(a) At C, \(g_x \) is + – 0 (circle one)
(b) At C, \(g_y \) is + – 0 (circle one)

(c) On the axis system below, sketch the graph of your elevation as you move along the dark curve from point A to point B.

BONUS (+3 if correct) What is a "Mobius Strip" and what is its remarkable property?

The end!! Tests back tomorrow. Important class -- last class before AP Break -- be here!!